Linear Regression vs Maximum Likelihood: Key Differences Explained πŸ“Š

Discover the fundamental differences between Linear Regression and Maximum Likelihood Estimation in machine learning. Plus, top book recommendations for beginners to kickstart your data science journey!

Linear Regression vs Maximum Likelihood: Key Differences Explained πŸ“Š
DataMListic
49.7K views β€’ Aug 6, 2024
Linear Regression vs Maximum Likelihood: Key Differences Explained πŸ“Š

About this video

πŸ“š *RECOMMENDED BOOKS TO START WITH MACHINE LEARNING*
β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬
If you're new to ML, here are the 3 best books I recommend (I've personally read all of these):
1. Hands-On Machine Learning – the go-to practical ML guide: https://amzn.to/3UcGqSS
2. Mathematics for Machine Learning – deep dive into the theoretical aspects of ML: https://amzn.to/3IZgHe7
3. Designing Machine Learning Systems - practical strategies for building scalable ML solutions: https://amzn.to/4ojEqFX

These are affiliate links, so buying through them helps support the channel at no extra cost to you β€” thanks πŸ™

*Summary*
β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬
In this video, we explore why the least squares method is closely related to the Gaussian distribution. Simply put, this happens because it assumes that the errors or residuals in the data follow a normal distribution with a mean on the regression line.

*Related Videos*
β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬
Why We Don't Use the Mean Squared Error (MSE) Loss in Classification: https://youtu.be/bNwI3IUOKyg
The Bessel's Correction: https://youtu.be/E3_408q1mjo
Gradient Boosting with Regression Trees Explained: https://youtu.be/lOwsMpdjxog
P-Values Explained: https://youtu.be/IZUfbRvsZ9w
Kabsch-Umeyama Algorithm: https://youtu.be/nCs_e6fP7Jo
Eigendecomposition Explained: https://youtu.be/ihUr2LbdYlE

*Follow Me*
β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬
🐦 Twitter: @datamlistic https://twitter.com/datamlistic
πŸ“Έ Instagram: @datamlistic https://www.instagram.com/datamlistic
πŸ“± TikTok: @datamlistic https://www.tiktok.com/@datamlistic

*Channel Support*
β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬β–¬
The best way to support the channel is to share the content. ;)

If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary)
β–Ί Patreon: https://www.patreon.com/datamlistic
β–Ί Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq
β–Ί Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281
β–Ί Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5
β–Ί Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a

#svd #singularvaluedecomposition #eigenvectors #eigenvalues #linearalgebra

Tags and Topics

Browse our collection to discover more content in these categories.

Video Information

Views

49.7K

Likes

1.7K

Duration

0:54

Published

Aug 6, 2024

User Reviews

4.7
(9)
Rate:

Related Trending Topics

LIVE TRENDS

Related trending topics. Click any trend to explore more videos.