Linear Regression vs Maximum Likelihood: Key Differences Explained π
Discover the fundamental differences between Linear Regression and Maximum Likelihood Estimation in machine learning. Plus, top book recommendations for beginners to kickstart your data science journey!

DataMListic
49.7K views β’ Aug 6, 2024

About this video
π *RECOMMENDED BOOKS TO START WITH MACHINE LEARNING*
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
If you're new to ML, here are the 3 best books I recommend (I've personally read all of these):
1. Hands-On Machine Learning β the go-to practical ML guide: https://amzn.to/3UcGqSS
2. Mathematics for Machine Learning β deep dive into the theoretical aspects of ML: https://amzn.to/3IZgHe7
3. Designing Machine Learning Systems - practical strategies for building scalable ML solutions: https://amzn.to/4ojEqFX
These are affiliate links, so buying through them helps support the channel at no extra cost to you β thanks π
*Summary*
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
In this video, we explore why the least squares method is closely related to the Gaussian distribution. Simply put, this happens because it assumes that the errors or residuals in the data follow a normal distribution with a mean on the regression line.
*Related Videos*
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
Why We Don't Use the Mean Squared Error (MSE) Loss in Classification: https://youtu.be/bNwI3IUOKyg
The Bessel's Correction: https://youtu.be/E3_408q1mjo
Gradient Boosting with Regression Trees Explained: https://youtu.be/lOwsMpdjxog
P-Values Explained: https://youtu.be/IZUfbRvsZ9w
Kabsch-Umeyama Algorithm: https://youtu.be/nCs_e6fP7Jo
Eigendecomposition Explained: https://youtu.be/ihUr2LbdYlE
*Follow Me*
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
π¦ Twitter: @datamlistic https://twitter.com/datamlistic
πΈ Instagram: @datamlistic https://www.instagram.com/datamlistic
π± TikTok: @datamlistic https://www.tiktok.com/@datamlistic
*Channel Support*
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
The best way to support the channel is to share the content. ;)
If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary)
βΊ Patreon: https://www.patreon.com/datamlistic
βΊ Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq
βΊ Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281
βΊ Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5
βΊ Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a
#svd #singularvaluedecomposition #eigenvectors #eigenvalues #linearalgebra
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
If you're new to ML, here are the 3 best books I recommend (I've personally read all of these):
1. Hands-On Machine Learning β the go-to practical ML guide: https://amzn.to/3UcGqSS
2. Mathematics for Machine Learning β deep dive into the theoretical aspects of ML: https://amzn.to/3IZgHe7
3. Designing Machine Learning Systems - practical strategies for building scalable ML solutions: https://amzn.to/4ojEqFX
These are affiliate links, so buying through them helps support the channel at no extra cost to you β thanks π
*Summary*
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
In this video, we explore why the least squares method is closely related to the Gaussian distribution. Simply put, this happens because it assumes that the errors or residuals in the data follow a normal distribution with a mean on the regression line.
*Related Videos*
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
Why We Don't Use the Mean Squared Error (MSE) Loss in Classification: https://youtu.be/bNwI3IUOKyg
The Bessel's Correction: https://youtu.be/E3_408q1mjo
Gradient Boosting with Regression Trees Explained: https://youtu.be/lOwsMpdjxog
P-Values Explained: https://youtu.be/IZUfbRvsZ9w
Kabsch-Umeyama Algorithm: https://youtu.be/nCs_e6fP7Jo
Eigendecomposition Explained: https://youtu.be/ihUr2LbdYlE
*Follow Me*
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
π¦ Twitter: @datamlistic https://twitter.com/datamlistic
πΈ Instagram: @datamlistic https://www.instagram.com/datamlistic
π± TikTok: @datamlistic https://www.tiktok.com/@datamlistic
*Channel Support*
β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬β¬
The best way to support the channel is to share the content. ;)
If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary)
βΊ Patreon: https://www.patreon.com/datamlistic
βΊ Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq
βΊ Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281
βΊ Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5
βΊ Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a
#svd #singularvaluedecomposition #eigenvectors #eigenvalues #linearalgebra
Tags and Topics
Browse our collection to discover more content in these categories.
Video Information
Views
49.7K
Likes
1.7K
Duration
0:54
Published
Aug 6, 2024
User Reviews
4.7
(9) Related Trending Topics
LIVE TRENDSRelated trending topics. Click any trend to explore more videos.
Trending Now