Build Efficient Machine Learning Pipelines with scikit-learn & Python π
Learn how to implement seamless machine learning pipelines using scikit-learn and Python. Follow this comprehensive GitHub guide to streamline data transformations and model training for better performance.

Krish Naik
71.5K views β’ Sep 1, 2022

About this video
github: https://github.com/krishnaik06/Pipeline-MAchine-Learning
Pipeline of transforms with a final estimator.
Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be βtransformsβ, that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using memory argument.
The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A stepβs estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or None.
-------------------------------------------------------------------------------------------------------------
All Playlist in my channel
Github Tutorials : https://www.youtube.com/watch?v=GW7B6vwktPA&list=PLZoTAELRMXVOSsBerFZKsdCaA4RYr4RGW
Live NLP Playlist: https://www.youtube.com/watch?v=w3coRFpyddQ&list=PLZoTAELRMXVNNrHSKv36Lr3_156yCo6Nn
Live Deep LEarning Playlist: https://www.youtube.com/watch?v=8arGWdq_KL0&list=PLZoTAELRMXVPiyueAqA_eQnsycC_DSBns
Live EDA Playlist: https://www.youtube.com/watch?v=bTN-6VPe8c0&list=PLZoTAELRMXVPzj1D0i_6ajJ6gyD22b3jh
Live ML Playlist: https://www.youtube.com/watch?v=z8sxaUw_f-M&list=PLZoTAELRMXVPjaAzURB77Kz0YXxj65tYz
Live Stats Playlist: https://www.youtube.com/watch?v=11unm2hmvOQ&list=PLZoTAELRMXVMgtxAboeAx-D9qbnY94Yay
My SQL Playlist: https://www.youtube.com/watch?v=us1XyayQ6fU&list=PLZoTAELRMXVNMRWlVf0bDDSxNEn38u9Cl
---------------------------------------------------------------------------------------------------------------
Please donate if you want to support the channel through GPay UPID,
Gpay: krishnaik06@okicici
Telegram link: https://t.me/joinchat/N77M7xRvYUd403DgfE4TWw
-------------------------------------------------------------------------------------------------------------
Please join as a member in my channel to get additional benefits like materials in Data Science, live streaming for Members and many more
https://www.youtube.com/channel/UCNU_lfiiWBdtULKOw6X0Dig/join
-----------------------------------------------------------------------------------------------------------
Please do subscribe my other channel too
https://www.youtube.com/channel/UCjWY5hREA6FFYrthD0rZNIw
---------------------------------------------------------------------------------------------------------
Connect with me here:
Twitter: https://twitter.com/Krishnaik06
Facebook: https://www.facebook.com/krishnaik06
instagram: https://www.instagram.com/krishnaik06
Pipeline of transforms with a final estimator.
Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be βtransformsβ, that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using memory argument.
The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A stepβs estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or None.
-------------------------------------------------------------------------------------------------------------
All Playlist in my channel
Github Tutorials : https://www.youtube.com/watch?v=GW7B6vwktPA&list=PLZoTAELRMXVOSsBerFZKsdCaA4RYr4RGW
Live NLP Playlist: https://www.youtube.com/watch?v=w3coRFpyddQ&list=PLZoTAELRMXVNNrHSKv36Lr3_156yCo6Nn
Live Deep LEarning Playlist: https://www.youtube.com/watch?v=8arGWdq_KL0&list=PLZoTAELRMXVPiyueAqA_eQnsycC_DSBns
Live EDA Playlist: https://www.youtube.com/watch?v=bTN-6VPe8c0&list=PLZoTAELRMXVPzj1D0i_6ajJ6gyD22b3jh
Live ML Playlist: https://www.youtube.com/watch?v=z8sxaUw_f-M&list=PLZoTAELRMXVPjaAzURB77Kz0YXxj65tYz
Live Stats Playlist: https://www.youtube.com/watch?v=11unm2hmvOQ&list=PLZoTAELRMXVMgtxAboeAx-D9qbnY94Yay
My SQL Playlist: https://www.youtube.com/watch?v=us1XyayQ6fU&list=PLZoTAELRMXVNMRWlVf0bDDSxNEn38u9Cl
---------------------------------------------------------------------------------------------------------------
Please donate if you want to support the channel through GPay UPID,
Gpay: krishnaik06@okicici
Telegram link: https://t.me/joinchat/N77M7xRvYUd403DgfE4TWw
-------------------------------------------------------------------------------------------------------------
Please join as a member in my channel to get additional benefits like materials in Data Science, live streaming for Members and many more
https://www.youtube.com/channel/UCNU_lfiiWBdtULKOw6X0Dig/join
-----------------------------------------------------------------------------------------------------------
Please do subscribe my other channel too
https://www.youtube.com/channel/UCjWY5hREA6FFYrthD0rZNIw
---------------------------------------------------------------------------------------------------------
Connect with me here:
Twitter: https://twitter.com/Krishnaik06
Facebook: https://www.facebook.com/krishnaik06
instagram: https://www.instagram.com/krishnaik06
Tags and Topics
Browse our collection to discover more content in these categories.
Video Information
Views
71.5K
Likes
2.5K
Duration
26:47
Published
Sep 1, 2022
User Reviews
4.7
(14) Related Trending Topics
LIVE TRENDSRelated trending topics. Click any trend to explore more videos.
Trending Now