Enhancing Protocol Security: Symbolic Verification with Dice 🎲 by Steve Kremer

Discover how Steve Kremer from Inria Nancy introduces a novel approach to symbolic protocol verification that incorporates probabilities, improving process equivalence analysis in complex systems.

Cyber Security & Resilience Seminar Series (CySe3)113 views01:00:59

🔥 Related Trending Topics

LIVE TRENDS

This video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!

THIS VIDEO IS TRENDING!

This video is currently trending in Saudi Arabia under the topic 'new zealand national cricket team vs west indies cricket team match scorecard'.

About this video

Symbolic protocol verification with dice: process equivalences in the presence of probabilities Abstract: Symbolic protocol verification generally abstracts probabilities away, considering computations that succeed only with negligible probability, such as guessing random numbers or breaking an encryption scheme, as impossible. This abstraction, sometimes referred to as the perfect cryptography assumption, has shown very useful as it simplifies automation of the analysis. However, probabilities may also appear in the control flow where they are generally not negligible. In this paper we consider a framework for symbolic protocol analysis with a probabilistic choice operator: the probabilistic applied pi calculus. We define and explore the relationships between several behavioral equivalences. In particular we show the need for randomized schedulers and exhibit a counter-example to a result in a previous work that relied on non-randomized ones. As in other frameworks that mix both non-deterministic and probabilistic choices, schedulers may sometimes be unrealistically powerful. We therefore consider two subclasses of processes that avoid this problem. In particular, when considering purely non-deterministic protocols, as is done in classical symbolic verification, we show that a probabilistic adversary has-maybe surprisingly-a strictly superior distinguishing power for may testing, which, when the number of sessions is bounded, we show to coincide with purely possibilistic similarity.

Video Information

Views
113

Total views since publication

Duration
01:00:59

Video length

Published
Nov 8, 2022

Release date

Quality
hd

Video definition