Master Scikit-Learn in Minutes: The Ultimate Python Machine Learning Crash Course πŸš€

Learn how to harness Scikit-Learn for effective machine learning with this comprehensive Python crash course. Perfect for beginners and professionals alike!

Master Scikit-Learn in Minutes: The Ultimate Python Machine Learning Crash Course πŸš€
NeuralNine
31.6K views β€’ Aug 3, 2025
Master Scikit-Learn in Minutes: The Ultimate Python Machine Learning Crash Course πŸš€

About this video

Today we to a crash course on Scikit-Learn, the go-to library in Python when it comes to traditional machine learning algorithms (i.e., not deep learning).

Scikit-Learn Docs: https://scikit-learn.org/stable/api/index.html

β—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύβ—Ύ
πŸ“š Programming Books & Merch πŸ“š
🐍 The Python Bible Book: https://www.neuralnine.com/books/
πŸ’» The Algorithm Bible Book: https://www.neuralnine.com/books/
πŸ‘• Programming Merch: https://www.neuralnine.com/shop

πŸ’Ό Services πŸ’Ό
πŸ’» Freelancing & Tutoring: https://www.neuralnine.com/services

πŸ–₯️ Setup & Gear πŸ–₯️: https://neuralnine.com/extras/

🌐 Social Media & Contact 🌐
πŸ“± Website: https://www.neuralnine.com/
πŸ“· Instagram: https://www.instagram.com/neuralnine
🐦 Twitter: https://twitter.com/neuralnine
🀡 LinkedIn: https://www.linkedin.com/company/neuralnine/
πŸ“ GitHub: https://github.com/NeuralNine
πŸŽ™ Discord: https://discord.gg/JU4xr8U3dm

Timestamps:
(0:00) Intro
(1:49) Environment Setup
(5:32) Preview Example
(12:22) Datasets
(23:12) Splitting Data
(33:02) Preprocessing
(41:35) Feature Encoding
(52:51) Classification
(1:00:27) Regression
(1:04:48) Clustering
(1:12:58) PCA
(1:18:04) Metrics
(1:23:33) Cross-Validation
(1:25:37) Hyperparameter Tuning
(1:31:04) Pipelines
(1:32:53) Outro

Tags and Topics

Browse our collection to discover more content in these categories.

Video Information

Views

31.6K

Likes

1.2K

Duration

01:33:56

Published

Aug 3, 2025

User Reviews

4.6
(6)
Rate:

Related Trending Topics

LIVE TRENDS

Related trending topics. Click any trend to explore more videos.