Paul Shafer:Reverse mathematics of Caristi's fixed point theorem and Ekeland's variational principle
The lecture was held within the framework of the Hausdorff Trimester Program: Types, Sets and Constructions. Abstract: Caristi's fixed point theorem is a fi...
🔥 Related Trending Topics
LIVE TRENDSThis video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!
THIS VIDEO IS TRENDING!
This video is currently trending in Bangladesh under the topic 's'.
Trending Now Globally
About this video
The lecture was held within the framework of the Hausdorff Trimester Program: Types, Sets and Constructions.
Abstract:
Caristi's fixed point theorem is a fixed point theorem for functions that are controlled by continuous functions but are necessarily continuous themselves. Let a 'Caristi system' be a tuple (X,V,f), where X is a complete separable metric space, V is a continuous function from X to the non-negative reals, and f is an arbitrary function from X to X such that for all x in X, d(x,f(x)) ≤ V(x) - V(f(x)). Caristi's fixed point theorem states that if (X,V,f) is a Caristi system, then f has a fixed point. In fact, Caristi's fixed point theorem also holds if V is only lower semi-continuous. in this talk, we explore the strengths of Caristi's fixed point theorem and related statements, such as Ekeland's variational principle, which vary from WKL0 in certain special cases to beyond Pi11-CA0.
Video Information
Views
446
Total views since publication
Likes
3
User likes and reactions
Duration
33:24
Video length
Published
Jul 12, 2018
Release date
Quality
hd
Video definition
About the Channel
Tags and Topics
This video is tagged with the following topics. Click any tag to explore more related content and discover similar videos:
Tags help categorize content and make it easier to find related videos. Browse our collection to discover more content in these categories.