NDSS 2020: Rethinking Leakage Abuse Attacks on Encrypted Search Algorithms π
Explore the latest insights from NDSS 2020 on leakage abuse attacks targeting encrypted search algorithms (ESA). Learn how these vulnerabilities impact data security and what new defenses are emerging.

NDSS Symposium
421 views β’ Apr 6, 2020

About this video
SESSION 6B-1 Revisiting Leakage Abuse Attacks
Encrypted search algorithms (ESA) are cryptographic algorithms that support search over encrypted data. ESAs can be designed with various primitives including searchable/structured symmetric encryption (SSE/STE) and oblivious RAM (ORAM). Leakage abuse attacks attempt to recover client queries using knowledge of the client's data. An important parameter for any leakage-abuse attack is its known-data rate; that is, the fraction of client data that must be known to the adversary.
In this work, we revisit leakage abuse attacks in several ways. We first highlight the practical limitations and assumptions underlying the often-cited IKK (Islam et al. NDSS '12) and Count (Cash et al., CCS '15) attacks. We then design four new leakage-abuse attacks that rely on much weaker assumptions. Three of these attacks are volumetric in the sense that they only exploit leakage related to document sizes. In particular, this means that they work not only on SSE/STE-based ESAs but also against ORAM-based solutions. We also introduce two volumetric injection attack which use adversarial file additions to recover queries even from ORAM-based solutions. As far as we know, these are the first attacks of their kind.
We evaluated all our attacks empirically and considered many experimental settings including different data collections, query selectivities, known-data rates, query space size and composition. From our experiments, we observed that the only setting that resulted in reasonable recovery rates under practical assumptions was the case of high-selectivity queries with a leakage profile that includes the response identity pattern (i.e., the identifiers of the matching documents) and the volume pattern (i.e., the size of the matching documents). All other attack scenarios either failed or relied on unrealistic assumptions (e.g., very high known-data rates). For this specific setting, we propose several suggestions and countermeasures including the use of schemes like PBS (Kamara et al, CRYPTO '18), VLH/AVLH (Kamara and Moataz, Eurocrypt '19), or the use of padding techniques like the ones recently proposed by Bost and Fouque (Bost and Fouque, IACR ePrint 2017/1060).
PAPER
https://www.ndss-symposium.org/wp-content/uploads/2020/02/23103.pdf
SLIDES
AUTHORS
Network and Distributed System Security (NDSS) Symposium 2020, 23-26 February 2019, Catamaran Resort Hotel & Spa in San Diego, California.
https://www.ndss-symposium.org/ndss-program/2020-program/
ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.
https://www.ndss-symposium.org/
#NDSS #NDSS20 #NDSS2020 #InternetSecurity
Encrypted search algorithms (ESA) are cryptographic algorithms that support search over encrypted data. ESAs can be designed with various primitives including searchable/structured symmetric encryption (SSE/STE) and oblivious RAM (ORAM). Leakage abuse attacks attempt to recover client queries using knowledge of the client's data. An important parameter for any leakage-abuse attack is its known-data rate; that is, the fraction of client data that must be known to the adversary.
In this work, we revisit leakage abuse attacks in several ways. We first highlight the practical limitations and assumptions underlying the often-cited IKK (Islam et al. NDSS '12) and Count (Cash et al., CCS '15) attacks. We then design four new leakage-abuse attacks that rely on much weaker assumptions. Three of these attacks are volumetric in the sense that they only exploit leakage related to document sizes. In particular, this means that they work not only on SSE/STE-based ESAs but also against ORAM-based solutions. We also introduce two volumetric injection attack which use adversarial file additions to recover queries even from ORAM-based solutions. As far as we know, these are the first attacks of their kind.
We evaluated all our attacks empirically and considered many experimental settings including different data collections, query selectivities, known-data rates, query space size and composition. From our experiments, we observed that the only setting that resulted in reasonable recovery rates under practical assumptions was the case of high-selectivity queries with a leakage profile that includes the response identity pattern (i.e., the identifiers of the matching documents) and the volume pattern (i.e., the size of the matching documents). All other attack scenarios either failed or relied on unrealistic assumptions (e.g., very high known-data rates). For this specific setting, we propose several suggestions and countermeasures including the use of schemes like PBS (Kamara et al, CRYPTO '18), VLH/AVLH (Kamara and Moataz, Eurocrypt '19), or the use of padding techniques like the ones recently proposed by Bost and Fouque (Bost and Fouque, IACR ePrint 2017/1060).
PAPER
https://www.ndss-symposium.org/wp-content/uploads/2020/02/23103.pdf
SLIDES
AUTHORS
Network and Distributed System Security (NDSS) Symposium 2020, 23-26 February 2019, Catamaran Resort Hotel & Spa in San Diego, California.
https://www.ndss-symposium.org/ndss-program/2020-program/
ABOUT NDSS
The Network and Distributed System Security Symposium (NDSS) fosters information exchange among researchers and practitioners of network and distributed system security. The target audience includes those interested in practical aspects of network and distributed system security, with a focus on actual system design and implementation. A major goal is to encourage and enable the Internet community to apply, deploy, and advance the state of available security technologies.
https://www.ndss-symposium.org/
#NDSS #NDSS20 #NDSS2020 #InternetSecurity
Tags and Topics
Browse our collection to discover more content in these categories.
Video Information
Views
421
Likes
5
Duration
25:35
Published
Apr 6, 2020
Related Trending Topics
LIVE TRENDSRelated trending topics. Click any trend to explore more videos.