What Do Neural Networks Really Learn? Exploring the Brain of an AI Model

Neural networks have become increasingly impressive in recent years, but there's a big catch: we don't really know what they are doing. We give them data and...

Rational Animations287.2K views17:35

🔥 Related Trending Topics

LIVE TRENDS

This video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!

THIS VIDEO IS TRENDING!

This video is currently trending in Thailand under the topic 'สภาพอากาศ'.

About this video

Neural networks have become increasingly impressive in recent years, but there's a big catch: we don't really know what they are doing. We give them data and ways to get feedback, and somehow, they learn all kinds of tasks. It would be really useful, especially for safety purposes, to understand what they have learned and how they work after they've been trained. The ultimate goal is not only to understand in broad strokes what they're doing but to precisely reverse engineer the algorithms encoded in their parameters. This is the ambitious goal of mechanistic interpretability. As an introduction to this field, we show how researchers have been able to partly reverse-engineer how InceptionV1, a convolutional neural network, recognizes images. ▀▀▀▀▀▀▀▀▀SOURCES & READINGS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ This topic is truly a rabbit hole. If you want to learn more about this important research and even contribute to it, check out this list of sources about mechanistic interpretability and interpretability in general we've compiled for you: On Interpreting InceptionV1: Feature visualization: https://distill.pub/2017/feature-visualization/ Zoom in: An Introduction to Circuits: https://distill.pub/2020/circuits/zoom-in/ The Distill journal contains several articles that try to make sense of how exactly InceptionV1 does what it does: https://distill.pub/2020/circuits/ OpenAI's Microscope tool lets us visualize the neurons and channels of a number of vision models in great detail: https://microscope.openai.com/models Here's OpenAI's Microscope tool pointed on layer Mixed3b in InceptionV1: https://microscope.openai.com/models/inceptionv1/mixed3b_0?models.op.feature_vis.type=channel&models.op.technique=feature_vis Activation atlases: https://distill.pub/2019/activation-atlas/ More recent work applying SAEs to InceptionV1: https://arxiv.org/abs/2406.03662v1 Transformer Circuits Thread, the spiritual successor of the circuits thread on InceptionV1. This time on transformers: https://transformer-circuits.pub/ In the video, we cite "Toy Models of Superposition": https://transformer-circuits.pub/2022/toy_model/index.html We also cite "Towards Monosemanticity: Decomposing Language Models With Dictionary Learning": https://transformer-circuits.pub/2023/monosemantic-features/ More recent progress: Mapping the Mind of a Large Language Model: Press: https://www.anthropic.com/research/mapping-mind-language-model Paper in the transformers circuits thread: https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html Extracting Concepts from GPT-4: Press: https://openai.com/index/extracting-concepts-from-gpt-4/ Paper: https://arxiv.org/abs/2406.04093 Browse features: https://openaipublic.blob.core.windows.net/sparse-autoencoder/sae-viewer/index.html Language models can explain neurons in language models (cited in the video): Press: https://openai.com/index/language-models-can-explain-neurons-in-language-models/ Paper: https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html View neurons: https://openaipublic.blob.core.windows.net/neuron-explainer/neuron-viewer/index.html Neel Nanda on how to get started with Mechanistic Interpretability: Concrete Steps to Get Started in Transformer Mechanistic Interpretability: https://www.neelnanda.io/mechanistic-interpretability/getting-started Mechanistic Interpretability Quickstart Guide: https://www.neelnanda.io/mechanistic-interpretability/quickstart 200 Concrete Open Problems in Mechanistic Interpretability: https://www.alignmentforum.org/posts/LbrPTJ4fmABEdEnLf/200-concrete-open-problems-in-mechanistic-interpretability More work mentioned in the video: Progress measures for grokking via mechanistic interpretability: https://arxiv.org/abs/2301.05217 Discovering Latent Knowledge in Language Models Without Supervision: https://arxiv.org/abs/2212.03827 Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning: https://www.nature.com/articles/s41551-018-0195-0 ▀▀▀▀▀▀▀▀▀PATREON, MEMBERSHIP, MERCH▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ 🟠 Patreon: https://www.patreon.com/rationalanimations 🔵 Channel membership: https://www.youtube.com/channel/UCgqt1RE0k0MIr0LoyJRy2lg/join 🟢 Merch: https://rational-animations-shop.fourthwall.com 🟤 Ko-fi, for one-time and recurring donations: https://ko-fi.com/rationalanimations ▀▀▀▀▀▀▀▀▀SOCIAL & DISCORD▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ Discord: https://discord.gg/5Y3Dwz89yH Reddit: https://www.reddit.com/r/RationalAnimations/ X/Twitter: https://twitter.com/RationalAnimat1 ▀▀▀▀▀▀▀▀▀PATRONS & MEMBERS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ AAAA you don't fit in the description this time! But we thank you from the bottom of our hearts. All of you, in this Google Doc: https://docs.google.com/document/d/18S3cEkXrllXdWQMxL9G0KjB26YMZnbA4I4VHw5j55oA/edit?usp=sharing ▀▀▀▀▀▀▀CREDITS▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ All the good doggos who worked on this video: https://docs.google.com/document/d/1KQZCfiv1nFKrAm9vcXNjNzQfTLVqY_ofXcWlgXH_dVY/edit?usp=sharing

Video Information

Views
287.2K

Total views since publication

Likes
17.4K

User likes and reactions

Duration
17:35

Video length

Published
Jun 14, 2024

Release date

Quality
hd

Video definition

Captions
Available

Subtitles enabled

Tags and Topics

This video is tagged with the following topics. Click any tag to explore more related content and discover similar videos:

Tags help categorize content and make it easier to find related videos. Browse our collection to discover more content in these categories.