Geppetto: A Flexible Solution for Verifiable Computation π
Discover how Geppetto offers a versatile approach to verifiable computation, ensuring security and efficiency. Presented by Bryan Parno at IEEE Security & Privacy 2015.

IEEE Symposium on Security and Privacy
1.4K views β’ Sep 12, 2015

About this video
Geppetto: Versatile Verifiable Computation
Bryan Parno
Presented at the
2015 IEEE Symposium on Security & Privacy
May 18--20, 2015
San Jose, CA
http://www.ieee-security.org/TC/SP2015/
ABSTRACT
Cloud computing sparked interest in Verifiable Computation protocols, which allow a weak client to securely outsource computations to remote parties. Recent work has dramatically reduced the client's cost to verify the correctness of their results, but the overhead to produce proofs remains largely impractical. Geppetto introduces complementary techniques for reducing prover overhead and increasing prover flexibility. With Multi QAPs, Geppetto reduces the cost of sharing state between computations (e.g, For MapReduce) or within a single computation by up to two orders of magnitude. Via a careful choice of cryptographic primitives, Geppetto's instantiation of bounded proof bootstrapping improves on prior bootstrapped systems by up to five orders of magnitude, albeit at some cost in universality. Geppetto also efficiently verifies the correct execution of proprietary (i.e, Secret) algorithms. Finally, Geppetto's use of energy-saving circuits brings the prover's costs more in line with the program's actual (rather than worst-case) execution time. Geppetto is implemented in a full-fledged, scalable compiler and runtime that consume LLVM code generated from a variety of source C programs and cryptographic libraries.
Bryan Parno
Presented at the
2015 IEEE Symposium on Security & Privacy
May 18--20, 2015
San Jose, CA
http://www.ieee-security.org/TC/SP2015/
ABSTRACT
Cloud computing sparked interest in Verifiable Computation protocols, which allow a weak client to securely outsource computations to remote parties. Recent work has dramatically reduced the client's cost to verify the correctness of their results, but the overhead to produce proofs remains largely impractical. Geppetto introduces complementary techniques for reducing prover overhead and increasing prover flexibility. With Multi QAPs, Geppetto reduces the cost of sharing state between computations (e.g, For MapReduce) or within a single computation by up to two orders of magnitude. Via a careful choice of cryptographic primitives, Geppetto's instantiation of bounded proof bootstrapping improves on prior bootstrapped systems by up to five orders of magnitude, albeit at some cost in universality. Geppetto also efficiently verifies the correct execution of proprietary (i.e, Secret) algorithms. Finally, Geppetto's use of energy-saving circuits brings the prover's costs more in line with the program's actual (rather than worst-case) execution time. Geppetto is implemented in a full-fledged, scalable compiler and runtime that consume LLVM code generated from a variety of source C programs and cryptographic libraries.
Video Information
Views
1.4K
Likes
22
Duration
16:22
Published
Sep 12, 2015
User Reviews
4.5
(1) Related Trending Topics
LIVE TRENDSRelated trending topics. Click any trend to explore more videos.
Trending Now