Master Exploratory Data Analysis in Python: pandas, numpy, matplotlib & seaborn π
Learn how to perform effective Exploratory Data Analysis (EDA) with Python using pandas, numpy, matplotlib, and seaborn. Perfect for beginners and data enthusiasts!

Data Science For Everyone
3.1K views β’ Jun 1, 2025

About this video
In this video, we dive into Exploratory Data Analysis (EDA) using powerful Python libraries like pandas, numpy, matplotlib, and seaborn. Whether you're a beginner or brushing up your data science skills, this step-by-step guide will help you understand your dataset better and prepare it for modeling.
Support me:
BuyMeACoffee: https://buymeacoffee.com/dsfe
Patreon: https://www.patreon.com/dsfeorg
Ko-fi: https://ko-fi.com/dsfe
Follow me:
Twitter: https://x.com/dsfeorg
Github: https://github.com/dsfeorg
Topics Covered:
1. Data Inspection: Get a first look at your dataset
2. Data Validation: Identify and resolve inconsistencies
3. Data Summarization: Use descriptive statistics to understand distributions
4. Handling Missing Data: Clean, remove, impute missing data effectively
5. Exploring Categorical Data: Analyze and visualize categorical features
6. Exploring Numeric Data: Dig into numeric trends and patterns
7. Handling Outliers: Detect and manage extreme values
Python libraries Used: pandas, numpy, matplotlib, seaborn
Chapters:
0:00 Introduction
1:52 Data Inspection
5:43 Data Validation
9:11 Data Summarization
12:15 Handling missing data
15:22 Imputing missing data
16:00 Exploring categorical data
20:00 Exploring numerical data
21:53 Handling Outliers
Datasets:
Penguins data: https://github.com/dsfeorg/EDA_python/blob/main/penguins.csv
Modified penguins data: https://github.com/dsfeorg/EDA_python/blob/main/penguins_mod.csv
Salaries data: https://github.com/dsfeorg/EDA_python/blob/main/salaries.csv
By the end of this tutorial, youβll have a solid foundation in EDA and be ready to extract insights from any dataset.
Donβt forget to Like, Share, and Subscribe for more data science content!
#pandaslibrary #python #dataanalysis
Support me:
BuyMeACoffee: https://buymeacoffee.com/dsfe
Patreon: https://www.patreon.com/dsfeorg
Ko-fi: https://ko-fi.com/dsfe
Follow me:
Twitter: https://x.com/dsfeorg
Github: https://github.com/dsfeorg
Topics Covered:
1. Data Inspection: Get a first look at your dataset
2. Data Validation: Identify and resolve inconsistencies
3. Data Summarization: Use descriptive statistics to understand distributions
4. Handling Missing Data: Clean, remove, impute missing data effectively
5. Exploring Categorical Data: Analyze and visualize categorical features
6. Exploring Numeric Data: Dig into numeric trends and patterns
7. Handling Outliers: Detect and manage extreme values
Python libraries Used: pandas, numpy, matplotlib, seaborn
Chapters:
0:00 Introduction
1:52 Data Inspection
5:43 Data Validation
9:11 Data Summarization
12:15 Handling missing data
15:22 Imputing missing data
16:00 Exploring categorical data
20:00 Exploring numerical data
21:53 Handling Outliers
Datasets:
Penguins data: https://github.com/dsfeorg/EDA_python/blob/main/penguins.csv
Modified penguins data: https://github.com/dsfeorg/EDA_python/blob/main/penguins_mod.csv
Salaries data: https://github.com/dsfeorg/EDA_python/blob/main/salaries.csv
By the end of this tutorial, youβll have a solid foundation in EDA and be ready to extract insights from any dataset.
Donβt forget to Like, Share, and Subscribe for more data science content!
#pandaslibrary #python #dataanalysis
Tags and Topics
Browse our collection to discover more content in these categories.
Video Information
Views
3.1K
Likes
154
Duration
25:29
Published
Jun 1, 2025
User Reviews
4.5
(3) Related Trending Topics
LIVE TRENDSRelated trending topics. Click any trend to explore more videos.