Master Exploratory Data Analysis in Python: pandas, numpy, matplotlib & seaborn πŸš€

Learn how to perform effective Exploratory Data Analysis (EDA) with Python using pandas, numpy, matplotlib, and seaborn. Perfect for beginners and data enthusiasts!

Master Exploratory Data Analysis in Python: pandas, numpy, matplotlib & seaborn πŸš€
Data Science For Everyone
3.1K views β€’ Jun 1, 2025
Master Exploratory Data Analysis in Python: pandas, numpy, matplotlib & seaborn πŸš€

About this video

In this video, we dive into Exploratory Data Analysis (EDA) using powerful Python libraries like pandas, numpy, matplotlib, and seaborn. Whether you're a beginner or brushing up your data science skills, this step-by-step guide will help you understand your dataset better and prepare it for modeling.

Support me:
BuyMeACoffee: https://buymeacoffee.com/dsfe
Patreon: https://www.patreon.com/dsfeorg
Ko-fi: https://ko-fi.com/dsfe

Follow me:
Twitter: https://x.com/dsfeorg
Github: https://github.com/dsfeorg

Topics Covered:
1. Data Inspection: Get a first look at your dataset
2. Data Validation: Identify and resolve inconsistencies
3. Data Summarization: Use descriptive statistics to understand distributions
4. Handling Missing Data: Clean, remove, impute missing data effectively
5. Exploring Categorical Data: Analyze and visualize categorical features
6. Exploring Numeric Data: Dig into numeric trends and patterns
7. Handling Outliers: Detect and manage extreme values

Python libraries Used: pandas, numpy, matplotlib, seaborn

Chapters:
0:00 Introduction
1:52 Data Inspection
5:43 Data Validation
9:11 Data Summarization
12:15 Handling missing data
15:22 Imputing missing data
16:00 Exploring categorical data
20:00 Exploring numerical data
21:53 Handling Outliers

Datasets:
Penguins data: https://github.com/dsfeorg/EDA_python/blob/main/penguins.csv
Modified penguins data: https://github.com/dsfeorg/EDA_python/blob/main/penguins_mod.csv
Salaries data: https://github.com/dsfeorg/EDA_python/blob/main/salaries.csv

By the end of this tutorial, you’ll have a solid foundation in EDA and be ready to extract insights from any dataset.

Don’t forget to Like, Share, and Subscribe for more data science content!

#pandaslibrary #python #dataanalysis

Tags and Topics

Browse our collection to discover more content in these categories.

Video Information

Views

3.1K

Likes

154

Duration

25:29

Published

Jun 1, 2025

User Reviews

4.5
(3)
Rate:

Related Trending Topics

LIVE TRENDS

Related trending topics. Click any trend to explore more videos.