Discover the Golden Age of European Mathematics (1500-1900) with NJ Wildberger 📚
Explore the fascinating history of polynomial equations and the pivotal developments in European mathematics from 1500 to 1900 in this insightful course by NJ Wildberger.

Insights into Mathematics
64.1K views • Apr 11, 2011

About this video
We now move to the Golden age of European mathematics: the period 1500-1900, in this course on the History of Mathematics. We discuss hurdles that the Europeans faced before this time and how they emerged, with the help of Arab algebra and translations of Greek works, to harness the Hindu-Arabic number system and a host of novel symbols including Vieta's new use of letters to represent unknowns to tackle new problems.
Quadratic equations had been solved by almost all earlier mathematical civilizations; cubic equations was a natural step, taken by Tartaglia and Cardano and others. Tartaglia also discovered a formula for the volume of a tetrahedron, and Vieta a trigonometric way of solving cubics.
************************
Screenshot PDFs for my videos are available at the website http://wildegg.com. These give you a concise overview of the contents of the lectures for various Playlists: great for review, study and summary.
My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/Norman_Wildberger
My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.
Online courses will be developed at openlearning.com. The first one, already underway is Algebraic Calculus One at https://www.openlearning.com/courses/algebraic-calculus-one/ Please join us for an exciting new approach to one of mathematics' most important subjects!
If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at https://www.patreon.com/njwildberger Your support would be much appreciated.
Quadratic equations had been solved by almost all earlier mathematical civilizations; cubic equations was a natural step, taken by Tartaglia and Cardano and others. Tartaglia also discovered a formula for the volume of a tetrahedron, and Vieta a trigonometric way of solving cubics.
************************
Screenshot PDFs for my videos are available at the website http://wildegg.com. These give you a concise overview of the contents of the lectures for various Playlists: great for review, study and summary.
My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/Norman_Wildberger
My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.
Online courses will be developed at openlearning.com. The first one, already underway is Algebraic Calculus One at https://www.openlearning.com/courses/algebraic-calculus-one/ Please join us for an exciting new approach to one of mathematics' most important subjects!
If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at https://www.patreon.com/njwildberger Your support would be much appreciated.
Tags and Topics
Browse our collection to discover more content in these categories.
Video Information
Views
64.1K
Likes
685
Duration
52:41
Published
Apr 11, 2011
User Reviews
4.4
(12)