Differential Geometry & Math History with NJ Wildberger
Explore the origins of differential geometry, calculus, and analytic geometry applied to curves and surfaces, with insights from NJ Wildberger. π

Insights into Mathematics
178.3K views β’ May 7, 2012

About this video
Differential geometry arises from applying calculus and analytic geometry to curves and surfaces. This video begins with a discussion of planar curves and the work of C. Huygens on involutes and evolutes, and the related notions of curvature and osculating circle. We discuss involutes of the catenary (yielding the tractrix), cycloid and parabola. The evolute of the parabola is a semi-cubical parabola. For space curves we describe the tangent line, osculating plane, principle normal and binormal.
Surfaces were studied by Euler, who investigated curvatures of planar sections and by Gauss, who realized that the product of Euler's two principal curvatures gave a new notion of curvature intrinsic to a surface. Curvature was ultimately extended by Riemann to higher dimensions, and plays today a major role in modern physics, due to the work of Einstein.
If you like this topic, and want to learn more, make sure you don't miss Wildberger's exciting new course on Differential Geometry! See the Playlist DiffGeom, at this channel.
************************
Screenshot PDFs for my videos are available at the website http://wildegg.com. These give you a concise overview of the contents of the lectures for various Playlists: great for review, study and summary.
My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/Norman_Wildberger
My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.
Online courses will be developed at openlearning.com. The first one, already underway is Algebraic Calculus One at https://www.openlearning.com/courses/algebraic-calculus-one/ Please join us for an exciting new approach to one of mathematics' most important subjects!
If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at https://www.patreon.com/njwildberger Your support would be much appreciated.
Surfaces were studied by Euler, who investigated curvatures of planar sections and by Gauss, who realized that the product of Euler's two principal curvatures gave a new notion of curvature intrinsic to a surface. Curvature was ultimately extended by Riemann to higher dimensions, and plays today a major role in modern physics, due to the work of Einstein.
If you like this topic, and want to learn more, make sure you don't miss Wildberger's exciting new course on Differential Geometry! See the Playlist DiffGeom, at this channel.
************************
Screenshot PDFs for my videos are available at the website http://wildegg.com. These give you a concise overview of the contents of the lectures for various Playlists: great for review, study and summary.
My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/Norman_Wildberger
My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.
Online courses will be developed at openlearning.com. The first one, already underway is Algebraic Calculus One at https://www.openlearning.com/courses/algebraic-calculus-one/ Please join us for an exciting new approach to one of mathematics' most important subjects!
If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at https://www.patreon.com/njwildberger Your support would be much appreciated.
Tags and Topics
Browse our collection to discover more content in these categories.
Video Information
Views
178.3K
Likes
2.3K
Duration
51:32
Published
May 7, 2012
User Reviews
4.6
(35) Related Trending Topics
LIVE TRENDSRelated trending topics. Click any trend to explore more videos.