Day 12 of WisdomAcademyAI: Master Linear Regression to Predict Data with AI! 📊

Join Anastasia on Day 12 as we explore the fundamentals of Linear Regression and learn how to predict numbers using AI magic. Perfect for beginners eager to understand data prediction!

Day 12 of WisdomAcademyAI: Master Linear Regression to Predict Data with AI! 📊
DailyAIWizard
18 views • Jun 11, 2025
Day 12 of WisdomAcademyAI: Master Linear Regression to Predict Data with AI! 📊

About this video

Welcome to Day 12 of WisdomAcademyAI, where we’re predicting numbers with the magic of Linear Regression! I’m Anastasia, your super thrilled AI guide, and today we’ll explore the basics of Linear Regression—a powerful ML technique to forecast numerical values like house prices. Sophia joins me with a magical demo using Python and scikit-learn to predict house prices based on size—it’s spellbinding! Whether you’re new to AI or following along from Days 1–11, this 27-minute lesson will ignite your curiosity. Let’s make AI magic together! <br /><br />Task of the Day: Build a Linear Regression model using Python (like in the demo) and share your R-squared in the comments! Let’s see your magical results! <br /><br />Subscribe for Daily Lessons: Don’t miss Day 13, where we’ll explore Logistic Regression Basics. Hit the bell to stay updated! <br /><br />#AIForBeginners #LinearRegression #MachineLearning #WisdomAcademyAI #PythonDemo #ScikitLearnDemo<br /><br />Generate house_prices.csv:<br />import pandas as pd<br />import numpy as np<br /><br />#Set a random seed for reproducibility<br />np.random.seed(42)<br /><br />#Generate data for 100 houses<br />num_rows = 100<br /><br />#Size: 800-3000 square feet<br />size = np.random.randint(800, 3001, size=num_rows)<br /><br />#Price: Linear relationship with size (price = 200 * size + 50000 + noise)<br />noise = np.random.normal(0, 20000, size=num_rows)<br />price = 200 * size + 50000 + noise<br /><br />#Create DataFrame<br />df = pd.DataFrame({<br /> 'size': size,<br /> 'price': price<br />})<br /><br />#Save to CSV<br />df.to_csv("house_prices.csv", index=False)<br />print("Generated house_prices.csv with 100 rows!")<br /><br />Linear Regression Script:<br />import pandas as pd<br />from sklearn.model_selection import train_test_split<br />from sklearn.linear_model import LinearRegression<br />from sklearn.metrics import r2_score<br /><br />#Step 1: Load the dataset<br />df = pd.read_csv("house_prices.csv")<br />print("Original Dataset:")<br />print(df.head())<br /><br />#Step 2: Prepare the data<br />X = df[['size']]<br />y = df['price']<br />X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)<br /><br />#Step 3: Train Linear Regression<br />model = LinearRegression()<br />model.fit(X_train, y_train)<br /><br />#Step 4: Predict and evaluate<br />y_pred = model.predict(X_test)<br />r2 = r2_score(y_test, y_pred)<br />print("\nR-squared:", r2)

Video Information

Views

18

Duration

6:13

Published

Jun 11, 2025

Related Trending Topics

LIVE TRENDS

Related trending topics. Click any trend to explore more videos.