Avoid These 17 Common Machine Learning Beginner Mistakes in Just 17 Minutes π
Learn how to spot and fix the most frequent beginner errors in machine learning with this quick, comprehensive guide. Perfect for newcomers looking to accelerate their learning and build better models!

Infinite Codes
86.6K views β’ Dec 20, 2024

About this video
All Machine Learning Beginner Mistakes explained in 17 Min
#########################################
I just started my own Patreon, in case you want to support!
Patreon Link: https://www.patreon.com/c/InfiniteCodes
#########################################
Donβt make the same mistakes I made! Here is a list of things to avoid when starting Machine Learning and Data Science.
Also Watch:
Learn Machine Learning Like a GENIUS and Not Waste Time https://youtu.be/qNxrPri1V0I
All Machine Learning Concepts Explained in 22 Minutes https://youtu.be/Fa_V9fP2tpU
All Machine Learning algorithms explained in 17 min https://youtu.be/E0Hmnixke2g
The Math that make Machine Learning easy (and how you can learn it) https://youtu.be/wOTFGRSUQ6Q
15 Machine Learning Lessons I Wish I Knew Earlier https://youtu.be/espQDESe07w
Machine Learning Playlist: https://www.youtube.com/watch?v=wOTFGRSUQ6Q&list=PLbdTl8vSSyUDAvDPc1r3j9itciu_kb5vG&ab_channel=InfiniteCodes
Git/Github Playlist:
https://www.youtube.com/watch?v=ZFFtMyOFPe8&list=PLbdTl8vSSyUBJg6PI9AqfJBw8U0y9J3kY&ab_channel=InfiniteCodes
================== Timestamps ================
00:00 - Intro
Data-Related Issues
00:36 - Not cleaning your data properly
01:20 - Forgetting to normalize/standardize
01:59 - Data leakage
02:38 - Class imbalance issues
03:17 - Not handling missing values correctly
Model Training
04:03 - Using wrong metrics
04:55 - Overfitting/underfitting
05:38 - Wrong learning rate
06:08 - Poor hyperparameter choices
06:58 - Not using cross-validation
Implementation
07:29 - Train/test set contamination
08:25 - Wrong loss function
08:58 - Incorrect feature encoding
09:54 - Not shuffling data
10:19 - Memory management issues
Evaluation
10:40 - Not checking for bias
11:12 - Ignoring model assumptions
12:05 - Poor validation strategy
12:31 - Misinterpreting results
Common Pitfalls
13:43 - Using complex models too early
14:52 - Not understanding the baseline
15:47 - Ignoring domain knowledge
16:46 - Poor documentation
17:15 - Not version controlling
#########################################
I just started my own Patreon, in case you want to support!
Patreon Link: https://www.patreon.com/c/InfiniteCodes
#########################################
Donβt make the same mistakes I made! Here is a list of things to avoid when starting Machine Learning and Data Science.
Also Watch:
Learn Machine Learning Like a GENIUS and Not Waste Time https://youtu.be/qNxrPri1V0I
All Machine Learning Concepts Explained in 22 Minutes https://youtu.be/Fa_V9fP2tpU
All Machine Learning algorithms explained in 17 min https://youtu.be/E0Hmnixke2g
The Math that make Machine Learning easy (and how you can learn it) https://youtu.be/wOTFGRSUQ6Q
15 Machine Learning Lessons I Wish I Knew Earlier https://youtu.be/espQDESe07w
Machine Learning Playlist: https://www.youtube.com/watch?v=wOTFGRSUQ6Q&list=PLbdTl8vSSyUDAvDPc1r3j9itciu_kb5vG&ab_channel=InfiniteCodes
Git/Github Playlist:
https://www.youtube.com/watch?v=ZFFtMyOFPe8&list=PLbdTl8vSSyUBJg6PI9AqfJBw8U0y9J3kY&ab_channel=InfiniteCodes
================== Timestamps ================
00:00 - Intro
Data-Related Issues
00:36 - Not cleaning your data properly
01:20 - Forgetting to normalize/standardize
01:59 - Data leakage
02:38 - Class imbalance issues
03:17 - Not handling missing values correctly
Model Training
04:03 - Using wrong metrics
04:55 - Overfitting/underfitting
05:38 - Wrong learning rate
06:08 - Poor hyperparameter choices
06:58 - Not using cross-validation
Implementation
07:29 - Train/test set contamination
08:25 - Wrong loss function
08:58 - Incorrect feature encoding
09:54 - Not shuffling data
10:19 - Memory management issues
Evaluation
10:40 - Not checking for bias
11:12 - Ignoring model assumptions
12:05 - Poor validation strategy
12:31 - Misinterpreting results
Common Pitfalls
13:43 - Using complex models too early
14:52 - Not understanding the baseline
15:47 - Ignoring domain knowledge
16:46 - Poor documentation
17:15 - Not version controlling
Tags and Topics
Browse our collection to discover more content in these categories.
Video Information
Views
86.6K
Likes
5.4K
Duration
18:02
Published
Dec 20, 2024
User Reviews
4.7
(17)