"So close 🤏🏼,yet so far ♾️" Explanation and code in description #maths #satisfying #adhd #ocd #art

I am the original creator of this Pi video. This went viral almost on all social media. Got 45 million view on Instagram and 12 million view on Tiktok. Link...

Chirag Dudhat59.3M views1:00

🔥 Related Trending Topics

LIVE TRENDS

This video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!

THIS VIDEO IS TRENDING!

This video is currently trending in Thailand under the topic 'สภาพอากาศ'.

About this video

I am the original creator of this Pi video. This went viral almost on all social media. Got 45 million view on Instagram and 12 million view on Tiktok. Link to the IG pi post : https://www.instagram.com/reel/CyrFBptrYC9/ Titok Post : https://www.tiktok.com/@thiebo_badminton/video/7292488315930971424 --------------------------------------------------- If you liked this "visualization of pi", I also made an UHD 1440p widescreen version of this pi simulation which is 3 minutes longer. Here is the link , hope you'd engage there too and help that go viral as well ! :) https://www.youtube.com/watch?v=tuR5NI-bvu8 --------------------------------------------------- If you are looking for a short explanation of the Post : The outer arm spins around at a speed, precisely π times faster than the inner arm. But because π is this never-ending, irrational number, that outer arm will never, ever stop at its starting point, no matter how long the video goes on. It's like a forever chase scene where the arm always misses the target line by the tiniest bit, and that bit is basically as thin as it gets. The Detailed explanation of this Pi post by "angzt" from reddit : https://www.reddit.com/r/oddlysatisfying/comments/17dif1m/comment/k5y7s8i/?utm_source=share&utm_medium=web2x&context=3 --------------------------------------------------- Python code for the final drawing made by this mechanism ( Not for the animation ) : import numpy as np import matplotlib.pyplot as plt # Create an array of theta values in degrees (e.g., from 0 to 113*360 degrees) theta_degrees = np.linspace(0, 113*360, 10000) # Convert degrees to radians theta_radians = np.deg2rad(theta_degrees) # Calculate z(theta) using the formula , 1j is imaginary number z = np.exp(theta_radians * 1j) + np.exp(np.pi * theta_radians * 1j) # Separate the real and imaginary parts of z x = np.real(z) y = np.imag(z) # Create a plot with specific settings plt.figure(figsize=(10, 10)) # Set a square figure 10x10 inches plt.plot(x, y, color='white', linewidth=0.5) # Set line color to white and line width to 0.5 plt.gca().set_facecolor('black') # Set background color to black plt.gca().set_aspect('equal') # Equal aspect ratio plt.grid(False) # Turn off the grids plt.xlim(-2.5, 2.5) # X-axis limit plt.ylim(-2.5, 2.5) # Y-axis limit plt.show() # Display the plot

Video Information

Views
59.3M

Total views since publication

Likes
3.0M

User likes and reactions

Duration
1:00

Video length

Published
Oct 23, 2023

Release date

Quality
hd

Video definition