François Charles: Bertini theorems in arithmetic geometry

Abstract: The classical Bertini irreducibility theorem states that if X is an irreducible projective variety of dimension at least 2 over an infinite field, ...

Centre International de Rencontres Mathématiques1.2K views01:00:04

🔥 Related Trending Topics

LIVE TRENDS

This video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!

THIS VIDEO IS TRENDING!

This video is currently trending in Pakistan under the topic 'f'.

About this video

Abstract: The classical Bertini irreducibility theorem states that if X is an irreducible projective variety of dimension at least 2 over an infinite field, then X has an irreducible hyperplane section. The proof does not apply in arithmetic situations, where one wants to work over the integers or a finite fields. I will discuss how to amend the theorem in these cases (joint with Bjorn Poonen over finite fields). Recording during the thematic meeting : "Rational Points and Algebraic Geometry " the September 29, 2016 at the Centre International de Rencontres Mathématiques (Marseille, France) Filmmaker: Guillaume Hennenfent Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, bibliographies, Mathematics Subject Classification - Multi-criteria search by author, title, tags, mathematical area

Video Information

Views
1.2K

Total views since publication

Likes
9

User likes and reactions

Duration
01:00:04

Video length

Published
Oct 12, 2016

Release date

Quality
hd

Video definition

Tags and Topics

This video is tagged with the following topics. Click any tag to explore more related content and discover similar videos:

Tags help categorize content and make it easier to find related videos. Browse our collection to discover more content in these categories.