Advancements in Machine Learning for Structured Prediction - Veselin Stoyanov (Johns Hopkins HLTCOE) 2012

This presentation discusses structured prediction challenges in natural language processing and social network analysis, focusing on the application of Markov Random Fields (MRFs) and other probabilistic graphical models.

Center for Language & Speech Processing(CLSP), JHU159 views01:01:45

🔥 Related Trending Topics

LIVE TRENDS

This video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!

THIS VIDEO IS TRENDING!

This video is currently trending in Egypt under the topic 'red'.

About this video

Abstract I am motivated by structured prediction problems in NLP and social network analysis. Markov Random Fields (MRFs) and other Probabilistic Graphical Models (PGMs) are suitable for representing structured prediction: they can model joint distributions and utilize standard inference procedures. MRFs also provide a principled ways for incorporating background knowledge and combining multiple systems.Two properties of structured prediction problems make learning challenging. First, structured prediction almost inevitably requires approximation to inference, decoding or model structure. Second, unlike the traditional ML setting that assumes i.i.d. training and test data, structured learning problems often consist of a single example used both for training and prediction.We address the two issues above. First, we argue that the presence of approximations in MRF-based systems requires a novel perspective on training. Instead of maximizing data likelihood, one should seek the parameters that minimize the empirical risk of the entire imperfect system. We show how to locally optimize this risk using error back-propagation and local optimization. On four NLP problems our approach significantly reduces loss on test data compared to choosing approximate MAP parameters.Second, we utilize data imputation in the limited data setting. At test time we use sampling to impute data that is a more accurate approximation of the data distribution. We use our risk minimization techniques to train fast discriminative models on the imputed data. With this we can: Train discriminative models given a single training and test exampletrain generative/discriminative hybrids that can incorporate useful priors and learn from semi-supervised data Biography Veselin Stoyanov is a postdoctoral researcher at the Human Language Technology Center of Excellence (HLT-COE) at Johns Hopkins University (JHU). Previously he spent two years working with Prof. Jason Eisner at JHU’s Center for Language and Speech Processing supported by a Computing Innovation Postdoctoral Fellowship. He received the Ph.D. degree from Cornell University under the supervision of Prof. Claire Cardie in 2009 and the Honors B.Sc. from the University of Delaware in 2002. His research interests reside in the intersection of Machine Learning and Computational Linguistics. More precisely, he is interested in using probabilistic models for complex structured problems with applications to knowledge base population, modeling social networks, extracting information from text and coreference resolution. In addition to the CIFellowship, Ves Stoyanov is the recipient of an NSF Graduate Research Fellowship and other academic honors.

Video Information

Views
159

Total views since publication

Duration
01:01:45

Video length

Published
Aug 9, 2023

Release date

Quality
hd

Video definition

Tags and Topics

This video is tagged with the following topics. Click any tag to explore more related content and discover similar videos:

Tags help categorize content and make it easier to find related videos. Browse our collection to discover more content in these categories.