The Mathematics of Diffie-Hellman Key Exchange and Infinite Series

An exploration of the mathematical principles behind the Diffie-Hellman key exchange and its relation to infinite series, highlighting the importance of symmetric keys in cryptography.

PBS Infinite Series89.7K views13:33

🔥 Related Trending Topics

LIVE TRENDS

This video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!

THIS VIDEO IS TRENDING!

This video is currently trending in India under the topic 'crypto exchange binance'.

About this video

Viewers like you help make PBS (Thank you 😃) . Support your local PBS Member Station here: https://to.pbs.org/donateinfi Symmetric keys are essential to encrypting messages. How can two people share the same key without someone else getting a hold of it? Upfront asymmetric encryption is one way, but another is Diffie-Hellman key exchange. This is part 3 in our Cryptography 101 series. Check out the playlist here for parts 1 & 2: https://www.youtube.com/watch?v=NOs34_-eREk&list=PLa6IE8XPP_gmVt-Q4ldHi56mYsBuOg2Qw Tweet at us! @pbsinfinite Facebook: facebook.com/pbsinfinite series Email us! pbsinfiniteseries [at] gmail [dot] com Previous Episode Topology vs. “a” Topology https://www.youtube.com/watch?v=tdOaMOcxY7U&t=13s Symmetric single-key encryption schemes have become the workhorses of secure communication for a good reason. They’re fast and practically bulletproof… once two parties like Alice and Bob have a single shared key in hand. And that’s the challenge -- they can’t use symmetric key encryption to share the original symmetric key, so how do they get started? Written and Hosted by Gabe Perez-Giz Produced by Rusty Ward Graphics by Ray Lux Assistant Editing and Sound Design by Mike Petrow and Meah Denee Barrington Made by Kornhaber Brown (www.kornhaberbrown.com) Thanks to Matthew O'Connor, Yana Chernobilsky, and John Hoffman who are supporting us on Patreon at the Identity level! And thanks to Nicholas Rose, Jason Hise, Thomas Scheer, Marting Sergio H. Faester, CSS, and Mauricio Pacheco who are supporting us at the Lemma level!

Video Information

Views
89.7K

Total views since publication

Likes
2.8K

User likes and reactions

Duration
13:33

Video length

Published
Jan 11, 2018

Release date

Quality
hd

Video definition

Captions
Available

Subtitles enabled

Tags and Topics

This video is tagged with the following topics. Click any tag to explore more related content and discover similar videos:

Tags help categorize content and make it easier to find related videos. Browse our collection to discover more content in these categories.