(3/12) World War II Mind of a Code Breaker

World War II Videos During the two years of the war, British cryptologists decoded German communications with limited success. Older codes, used for low sec...

2bn442RCT•30.6K views•10:01

🔥 Related Trending Topics

LIVE TRENDS

This video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!

THIS VIDEO IS TRENDING!

This video is currently trending in United Kingdom under the topic 'people postcode'.

About this video

World War II Videos During the two years of the war, British cryptologists decoded German communications with limited success. Older codes, used for low security messages, were readily identified and broken by the Bletchley Park team. Some newer codes were broken mathematically, but decoding and translating these messages by hand proved an arduous task. By the time messages were fully understood, the information they contained was often outdated. Compounding the problem, these intercepts contained very little useful intelligence information. Since the mid-1930s, the German government had used complex cipher machines to disguise their most important communications. The first great code breaking triumph at Bletchley Park came on August 30, 1941. A British "Y Station," one of the military listening stations that intercepted German communications, picked up a depth, a repeat transmission that used the same settings on the cipher machine. This intercept was forwarded to Bletchley Park. Cryptologists identified as "fish," the nickname for a message produced by the illusive Geheimschreiber cipher machine. Within two months, the Bletchley Park team broke the high-level German code. To facilitate the processing of "fish" intercepts, Bletchley Park engineers borrowed an idea from plans the Polish intelligence service gave Britain before the war. They constructed a machine that aided the deciphering of intercepts, nicknamed a "bombe" because of the low, roaring noise it made while operating. The "bombe" constructed to decipher Geheimschreiber transmissions did help cryptographers to process intercepts more rapidly, but the machine required the exact synchronization of two paper tapes for printing. The tapes often broke, and the machine had to be reset. In addition, the start setting to process each intercept, the original cipher settings used by the Germans to send the message, had to be calculated by British cryptologists by hand. The process was still too complex to yield decoded intercepts ready for immediate translation to be useful to intelligence and military personnel. Most of Germany's high-level military messages were encoded using a cipher machine called Enigma. The complex code used not only a cipher, but also an overlaying encryption to disguise the original text. The series of rotor wheels on the Enigma teleprinter gave the machine an extraordinary number of code combinations. The Germans were so confidant that the machine code was so nearly infinite in possibilities that it could never be broken. However, various intelligence services in neighboring nations had made considerable progress breaking Enigma even before the outbreak of the war. In Britain, efforts to break Enigma were known as Operation Ultra. In the months preceding the German invasion of Poland in 1939, Polish intelligence passed on to British intelligence information on their efforts to break Enigma. Most helpful was the information Polish spies gathered on how the cipher machine operated, including sketches of the teleprinter and some of its components. With the information, Bletchley Park cryptologists found two key weak links in the Enigma code. Enigma code prohibited that any letter be encrypted as itself, and German standards of communication dictated that the same phrase begin all transmissions. Exploiting these two weaknesses, British cryptologists unraveled the Enigma code mathematically in late 1940. Even though cryptologists could read portions of Enigma transmissions, they encountered the same delay of accessing intercepted information as they had with other codes. Another bombe was constructed that could process Enigma codes, expediting code breaking. However, cryptologists and engineers at Bletchley Park realized that another mechanical solution was needed to fully exploit German intercepts. To this end, two Bletchley Park engineers invented Colossus, the first electronic, programmable machine in 1943. Colossus not only decoded messages, but also broke through the overlaying cipher, producing a ready to translate copy of the intercept in the original German. With Colossus, Bletchley Park could decipher German communications before the intended recipients. Translated intercepts were immediately passed on to intelligence and military officials, making Bletchley Park central to the Allied war effort.

Video Information

Views
30.6K

Total views since publication

Likes
80

User likes and reactions

Duration
10:01

Video length

Published
Jun 3, 2009

Release date

Quality
sd

Video definition

Tags and Topics

This video is tagged with the following topics. Click any tag to explore more related content and discover similar videos:

Tags help categorize content and make it easier to find related videos. Browse our collection to discover more content in these categories.