High-dimensional Optimization with Applications to Compute-Optimal Neural Scaling Laws
TITLE: High-dimensional Optimization with Applications to Compute-Optimal Neural Scaling Laws SPEAKER: Courtney Paquette (McGill University) ABSTRACT: Give...
🔥 Related Trending Topics
LIVE TRENDSThis video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!
THIS VIDEO IS TRENDING!
This video is currently trending in Bangladesh under the topic 's'.
Trending Now Globally
About this video
TITLE: High-dimensional Optimization with Applications to Compute-Optimal Neural Scaling Laws
SPEAKER: Courtney Paquette (McGill University)
ABSTRACT: Given the massive scale of modern ML models, we now only get a single shot to train them effectively. This restricts our ability to test multiple architectures and hyper-parameter configurations. Instead, we need to understand how these models scale, allowing us to experiment with smaller problems and then apply those insights to larger-scale models. In this talk, I will present a framework for analyzing scaling laws in stochastic learning algorithms using a power-law random features model (PLRF), leveraging high-dimensional probability and random matrix theory. I will then use this scaling law to address the compute-optimal question: How should we choose model size and hyper-parameters to achieve the best possible performance in the most compute-efficient manner? Then using this PLRF model, I will devise a new momentum-based algorithm that (provably) improves the scaling law exponent. Finally, I will present some numerical experiments on LSTMs that show how this new stochastic algorithm can be applied to real data to improve the compute-optimal exponent.
BIO: Courtney Paquette is an assistant professor at McGill University in the Mathematics and Statistics department, a CIFAR AI Chair (MILA), and an active member of the Montreal Machine Learning Optimization Group (MTL MLOpt) at MILA. Her research broadly focuses on designing and analyzing algorithms for large-scale optimization problems, motivated by applications in data science, and using techniques that draw from a variety of fields, including probability, complexity theory, and convex and nonsmooth analysis. Dr. Paquette is a lead organizer of the OPT-ML Workshop at NeurIPS since 2020, and a lead organizer (and original creator) of the High-dimensional Learning Dynamics (HiLD) Workshop at ICML.
Video Information
Views
40
Total views since publication
Likes
2
User likes and reactions
Duration
54:16
Video length
Published
Oct 24, 2025
Release date
Quality
hd
Video definition