Master Categorical Data Encoding with Scikit-learn's OrdinalEncoder & OneHotEncoder π
Learn how to effectively convert categorical variables into numerical format using Scikit-learn's OrdinalEncoder and OneHotEncoder. Boost your machine learning models with these essential preprocessing techniques!

learndataa
1.2K views β’ Dec 17, 2020

About this video
The video discusses the intuition and code to numerically encode categorical data using OrdinalEncoder() and OneHotEncoder() in Scikit-learn in Python.
Timeline
(Python 3.8)
00:00 - Outline of video
00:36 - What are categorical features?
01:30 - Why is there a need to encode categorical features?
03:09 - What are ordered categories?
04:09 - Code snippet
05:52 - Open Jupyter notebook
06:06 - Data
06:21 - OrdinalEncoder(): (default) categories='auto'
10:01 - OrdinalEncoder(): categories= -*custom order*-
12:30 - OneHotEncoder(): (default)
16:20 - OneHotEncoder(): specify list of categories
20:35 - OneHotEncoder(): handle_unknown='ignore'
22:27 - OneHotEncoder(): drop='if_binary'
26:25 - DictVectorizer(): one hot encode categories from a dictionary
29:21 - Collinearity: Matrix with determinant = zero
30:42 - Ending notes
########
# Data
########
game = [
['first', 'gold', 'top'],
['second', 'silver', 'middle'],
['third', 'bronze', 'bottom']
]
x = [
['football', 'helmet', 'ground'],
['basketball', 'shoes', 'net'],
['cricket', 'bat', 'pitch'],
['tennis', 'band', 'court']
]
h = [
['male', 'truck', 'blue'],
['female', 'car', 'green'],
['male', 'bike', 'gray']
]
plants = [
{'fruit': 'pear', 'weight': 178.},
{'fruit': 'pomegranate', 'weight': 250.},
{'fruit': 'cherry', 'weight': 5.}
]
Timeline
(Python 3.8)
00:00 - Outline of video
00:36 - What are categorical features?
01:30 - Why is there a need to encode categorical features?
03:09 - What are ordered categories?
04:09 - Code snippet
05:52 - Open Jupyter notebook
06:06 - Data
06:21 - OrdinalEncoder(): (default) categories='auto'
10:01 - OrdinalEncoder(): categories= -*custom order*-
12:30 - OneHotEncoder(): (default)
16:20 - OneHotEncoder(): specify list of categories
20:35 - OneHotEncoder(): handle_unknown='ignore'
22:27 - OneHotEncoder(): drop='if_binary'
26:25 - DictVectorizer(): one hot encode categories from a dictionary
29:21 - Collinearity: Matrix with determinant = zero
30:42 - Ending notes
########
# Data
########
game = [
['first', 'gold', 'top'],
['second', 'silver', 'middle'],
['third', 'bronze', 'bottom']
]
x = [
['football', 'helmet', 'ground'],
['basketball', 'shoes', 'net'],
['cricket', 'bat', 'pitch'],
['tennis', 'band', 'court']
]
h = [
['male', 'truck', 'blue'],
['female', 'car', 'green'],
['male', 'bike', 'gray']
]
plants = [
{'fruit': 'pear', 'weight': 178.},
{'fruit': 'pomegranate', 'weight': 250.},
{'fruit': 'cherry', 'weight': 5.}
]
Tags and Topics
Browse our collection to discover more content in these categories.
Video Information
Views
1.2K
Likes
25
Duration
31:24
Published
Dec 17, 2020
User Reviews
4.5
(1) Related Trending Topics
LIVE TRENDSRelated trending topics. Click any trend to explore more videos.
Trending Now