Linear Regression vs Logistic Regression - What's The Difference?

Whether it's predicting the stock market, estimating the likelihood of a customer churning, or even guessing the type of fruit based on its color and shape, ...

The Comparison Channel49.2K views5:04

🔥 Related Trending Topics

LIVE TRENDS

This video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!

THIS VIDEO IS TRENDING!

This video is currently trending in Saudi Arabia under the topic 'new zealand national cricket team vs west indies cricket team match scorecard'.

About this video

Whether it's predicting the stock market, estimating the likelihood of a customer churning, or even guessing the type of fruit based on its color and shape, regression is a powerful tool in the data scientist's toolbox. Linear regression can be applied to a wide range of problems where the goal is to predict a continuous outcome based on one or more independent variables. For example, you could use linear regression to predict the price of a house based on its size, location, and other factors. Logistic regression, on the other hand, is typically used to predict a binary outcome, such as success or failure, win or lose. It is particularly useful for classification problems, where the goal is to predict which of two or more classes a given input belongs to. For example, you could use logistic regression to predict whether a customer will churn or not based on their behavior. You could also use it to predict whether an email is spam or not based on its content.

Video Information

Views
49.2K

Total views since publication

Likes
818

User likes and reactions

Duration
5:04

Video length

Published
Dec 4, 2022

Release date

Quality
hd

Video definition