What is the Pumping Lemma
Every regular language must satisfy the pumping lemma. The formal statement of the pumping lemma is this: If A is a regular language, then there is a pumpi...
About this video
Every regular language must satisfy the pumping lemma. The formal statement of the pumping lemma is this:
If A is a regular language, then there is a pumping length p, where if s is any string in A that is at least length p, then s may be divided into 3 pieces, s = xyz, satisfying the following conditions:
1. for each i ≥ 0, xyⁱz ∈ A
2. |y|﹥0
3. |xy| ≤ p
The lemma can be a little tricky to understand at first, and hopefully this video can help with that.
This video only covers the basics of the pumping lemma. If you want to know how the pumping lemma is used to prove that a language is not regular, check out this video instead:
____________________
Additional resources:
https://youtu.be/PK3wL7DXuuw
- My previous video on another property of regular languages—the closure property under the regular operations.
Michael Sipser. 2006. Introduction to the Theory of Computation (2nd. ed.). International Thomson Publishing.
- The main source of my Theory of Computation knowledge (a textbook). Read Chapter 1.4: Nonregular Languages to learn more about the pumping lemma and the pigeonhole principle (and the formal proofs for showing nonregularity).
_____________________
And as always, this video project could not have been done without the support and guidance of Audrey St. John at Mount Holyoke College, a truly incredible professor-mentor-human.
4.7
34 user reviews
Write a Review
User Reviews
0 reviewsBe the first to comment...
Video Information
Views
170.8K
Total views since publication
Likes
5.1K
User likes and reactions
Duration
5:11
Video length
Published
Nov 5, 2020
Release date
Quality
hd
Video definition
About the Channel
Related Trending Topics
LIVE TRENDSThis video may be related to current global trending topics. Click any trend to explore more videos about what's hot right now!
THIS VIDEO IS TRENDING!
This video is currently trending in Kenya under the topic 'betty bayo'.